论文标题
非亚伯伏特拉晶格的Painlevé型减少
Painlevé type reductions for the non-Abelian Volterra lattices
论文作者
论文摘要
Volterra Grattice承认了两个非亚伯类似物,这些类似物保留了整合性。对于每个人,非自治对称的固定方程定义了与晶格一致的约束,并导致painlevé型方程。对于低阶的对称性(包括缩放和主对称),可以将此约束降低为二阶方程。这引起了离散painlevé方程DP $ _1 $和DP $ _ {34} $的两个非阿布尔概括,以及连续的Painlevé方程式P $ _3 $,P $ _4 $和P $ _5 $。
The Volterra lattice admits two non-Abelian analogs that preserve the integrability property. For each of them, the stationary equation for non-autonomous symmetries defines a constraint that is consistent with the lattice and leads to Painlevé-type equations. In the case of symmetries of low order, including the scaling and master-symmetry, this constraint can be reduced to second order equations. This gives rise to two non-Abelian generalizations for the discrete Painlevé equations dP$_1$ and dP$_{34}$ and for the continuous Painlevé equations P$_3$, P$_4$ and P$_5$.