论文标题
形状受限的CNN用于心脏MR分割,同时预测形状和姿势参数
Shape Constrained CNN for Cardiac MR Segmentation with Simultaneous Prediction of Shape and Pose Parameters
论文作者
论文摘要
使用卷积神经网络(CNN)的语义分割是许多医学分割任务的最新,包括心脏MR图像中的左心室(LV)分割。但是,缺点是这些CNN缺乏明确的形状约束,有时会导致不现实的分割。在本文中,我们通过从统计形状模型中得出的姿势和形状参数的回归来执行LV和心肌分割。集成的形状模型将预测的分割规范化并保证了逼真的形状。此外,与语义分割相反,它可以直接计算区域措施,例如心肌厚度。我们通过在训练过程中同时构造分割距离图来实现形状和姿势预测的鲁棒性。我们在内部临床数据集的五倍交叉验证中评估了提出的方法,其中75名受试者包含1539个划定的短轴切片,覆盖了从顶点到基础的LV,LV的相关性为99%,LV面积为94%,心肌面积为98%,LV Dimensions和88%的相关性。该方法还在LVQUAN18和LVQUAN19公共数据集上及时验证,并获得了最先进的结果。
Semantic segmentation using convolutional neural networks (CNNs) is the state-of-the-art for many medical segmentation tasks including left ventricle (LV) segmentation in cardiac MR images. However, a drawback is that these CNNs lack explicit shape constraints, occasionally resulting in unrealistic segmentations. In this paper, we perform LV and myocardial segmentation by regression of pose and shape parameters derived from a statistical shape model. The integrated shape model regularizes predicted segmentations and guarantees realistic shapes. Furthermore, in contrast to semantic segmentation, it allows direct calculation of regional measures such as myocardial thickness. We enforce robustness of shape and pose prediction by simultaneously constructing a segmentation distance map during training. We evaluated the proposed method in a fivefold cross validation on a in-house clinical dataset with 75 subjects containing a total of 1539 delineated short-axis slices covering LV from apex to base, and achieved a correlation of 99% for LV area, 94% for myocardial area, 98% for LV dimensions and 88% for regional wall thicknesses. The method was additionally validated on the LVQuan18 and LVQuan19 public datasets and achieved state-of-the-art results.