论文标题

多次预测利用合成轨迹

Multiple Future Prediction Leveraging Synthetic Trajectories

论文作者

Berlincioni, Lorenzo, Becattini, Federico, Seidenari, Lorenzo, Del Bimbo, Alberto

论文摘要

轨迹预测是一项重要的任务,尤其是在自动驾驶中。预测其他移动代理的位置的能力可以屈服于有效的计划,从而确保自动驾驶汽车的安全以及观察到的实体的安全性。在这项工作中,我们提出了一种基于马尔可夫链的数据驱动方法来生成合成轨迹,这对于训练多个将来的轨迹预测指标很有用。优点是双重的:一方面,合成样品可用于增强现有数据集并训练更有效的预测因子;另一方面,它允许生成具有多个基础真理的样本,对应于观察到的轨迹的不同可能的结果。我们定义了一个轨迹预测模型和明确解决问题多模式的损失,我们表明合成和实际数据结合会导致预测改进,从而获得最新的结果。

Trajectory prediction is an important task, especially in autonomous driving. The ability to forecast the position of other moving agents can yield to an effective planning, ensuring safety for the autonomous vehicle as well for the observed entities. In this work we propose a data driven approach based on Markov Chains to generate synthetic trajectories, which are useful for training a multiple future trajectory predictor. The advantages are twofold: on the one hand synthetic samples can be used to augment existing datasets and train more effective predictors; on the other hand, it allows to generate samples with multiple ground truths, corresponding to diverse equally likely outcomes of the observed trajectory. We define a trajectory prediction model and a loss that explicitly address the multimodality of the problem and we show that combining synthetic and real data leads to prediction improvements, obtaining state of the art results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源