论文标题

参数偏微分方程的傅立叶神经操作员

Fourier Neural Operator for Parametric Partial Differential Equations

论文作者

Li, Zongyi, Kovachki, Nikola, Azizzadenesheli, Kamyar, Liu, Burigede, Bhattacharya, Kaushik, Stuart, Andrew, Anandkumar, Anima

论文摘要

神经网络的经典发展主要集中在有限维欧几里得空间之间学习映射。最近,这已被概括为在功能空间之间学习映射的神经操作员。对于部分微分方程(PDE),神经操作员直接学习从任何功能参数依赖性到解决方案的映射。因此,与解决方程实例的经典方法相反,他们学习了整个PDE家族。在这项工作中,我们通过直接在傅立叶空间中对积分内核进行参数化来制定新的神经操作员,从而允许具有表现力和高效的体系结构。我们对汉堡方程,达西流动和纳维尔 - 斯托克斯方程进行实验。傅立叶神经操作员是成功用零拍超分辨率模拟湍流的第一种基于ML的方法。与传统的PDE求解器相比,它最多要快三个数量级。此外,与固定分辨率下的以前基于学习的求解器相比,它的准确性优异。

The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation. The Fourier neural operator is the first ML-based method to successfully model turbulent flows with zero-shot super-resolution. It is up to three orders of magnitude faster compared to traditional PDE solvers. Additionally, it achieves superior accuracy compared to previous learning-based solvers under fixed resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源