论文标题
关于涵盖图的理想的符号能力的最小自由分辨率
On the minimal free resolution of symbolic powers of cover ideals of graphs
论文作者
论文摘要
对于任何图$ g $,假设$ j(g)$是$ g $的封面理想。令$ j(g)^{(k)} $表示$ j(g)$的$ k $ th符号功率。我们用$ j(g)^{(k)} $的属性表征所有图表$ g $,对于某些(等效地,所有)整数$ k \ geq 2 $具有线性分辨率。此外,可以证明,对于任何图$ g $,序列$ \ big({\ rm reg}(j(g)^{(k)})\ big)_ {k = 1}^{\ infty} $是无eCreasing的。此外,当$ g $是无爪图的无混合时,我们计算$ j(g)^{(k)} $的最小发电机的最小生成器。
For any graph $G$, assume that $J(G)$ is the cover ideal of $G$. Let $J(G)^{(k)}$ denote the $k$th symbolic power of $J(G)$. We characterize all graphs $G$ with the property that $J(G)^{(k)}$ has a linear resolution for some (equivalently, for all) integer $k\geq 2$. Moreover, it is shown that for any graph $G$, the sequence $\big({\rm reg}(J(G)^{(k)})\big)_{k=1}^{\infty}$ is nondecreasing. Furthermore, we compute the largest degree of minimal generators of $J(G)^{(k)}$ when $G$ is either an unmixed of a claw-free graph.