论文标题

互动识别的自我选择环境

Self-Selective Context for Interaction Recognition

论文作者

Kilickaya, Mert, Hussein, Noureldien, Gavves, Efstratios, Smeulders, Arnold

论文摘要

人类对象互动识别旨在确定人类主体与对象之间的关系。研究人员将全球场景环境纳入深度卷积神经网络的早期层次。他们报告的性能有了显着提高,因为通常相互作用与现场相关(\ ie骑着城市街上的骑自行车)。但是,这种方法会导致以下问题。它增加了早期层中的网络大小,因此不有效。当场景无关紧要时,它会导致嘈杂的滤镜响应,因此不准确。它仅利用场景上下文,而人类对象相互作用提供了多种上下文,因此不完整。为了避免这些问题,在这项工作中,我们提出了自选择性环境(SSC)。 SSC以人类对象的共同出现和上下文的方式运作,以使最歧视的环境发挥作用。我们设计了新颖的上下文特征,以建模人类对象相互作用的局部性,并表明SSC可以与最新的交互识别模型无缝集成。我们的实验表明,SSC会导致相互作用识别性能的重要提高,同时使用较少的参数。

Human-object interaction recognition aims for identifying the relationship between a human subject and an object. Researchers incorporate global scene context into the early layers of deep Convolutional Neural Networks as a solution. They report a significant increase in the performance since generally interactions are correlated with the scene (\ie riding bicycle on the city street). However, this approach leads to the following problems. It increases the network size in the early layers, therefore not efficient. It leads to noisy filter responses when the scene is irrelevant, therefore not accurate. It only leverages scene context whereas human-object interactions offer a multitude of contexts, therefore incomplete. To circumvent these issues, in this work, we propose Self-Selective Context (SSC). SSC operates on the joint appearance of human-objects and context to bring the most discriminative context(s) into play for recognition. We devise novel contextual features that model the locality of human-object interactions and show that SSC can seamlessly integrate with the State-of-the-art interaction recognition models. Our experiments show that SSC leads to an important increase in interaction recognition performance, while using much fewer parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源