论文标题

受限的运动计划网络x

Constrained Motion Planning Networks X

论文作者

Qureshi, Ahmed H., Dong, Jiangeng, Baig, Asfiya, Yip, Michael C.

论文摘要

受限的运动计划是一个具有挑战性的研究领域,旨在采用计算高效的方法,可以在给定的开始和目标配置之间找到无冲突的路径。这些计划问题经常出现,例如在机器人操纵中执行日常生活辅助任务。但是,很少有针对受限的运动计划的解决方案,而存在的那些人则在在歧管上找到路径解决方案时具有很高的计算时间复杂性。为了应对这一挑战,我们提出了受限的运动计划网络X(Compnetx)。这是一种神经计划方法,包括有条件的深神经发生器和具有基于神经梯度的快速投影算子的歧视器。我们还介绍了神经任务和场景表示,CompnETX在其上生成隐式的歧管配置,以使涡轮增压构成任何基本的经典计划者,例如基于抽样的运动计划方法,以快速求解复杂的约束计划任务。我们表明,我们的方法在各种挑战性的情况下找到了与最先进的传统探路工具相比,与最先进的传统探路工具相比,找到具有较高成功率和计算时间较低的路径解决方案。

Constrained motion planning is a challenging field of research, aiming for computationally efficient methods that can find a collision-free path on the constraint manifolds between a given start and goal configuration. These planning problems come up surprisingly frequently, such as in robot manipulation for performing daily life assistive tasks. However, few solutions to constrained motion planning are available, and those that exist struggle with high computational time complexity in finding a path solution on the manifolds. To address this challenge, we present Constrained Motion Planning Networks X (CoMPNetX). It is a neural planning approach, comprising a conditional deep neural generator and discriminator with neural gradients-based fast projection operator. We also introduce neural task and scene representations conditioned on which the CoMPNetX generates implicit manifold configurations to turbo-charge any underlying classical planner such as Sampling-based Motion Planning methods for quickly solving complex constrained planning tasks. We show that our method finds path solutions with high success rates and lower computation times than state-of-the-art traditional path-finding tools on various challenging scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源