论文标题
schrödinger序列的点融合在$ \ mathbb {r}^{2} $中表示
Pointwise Convergence for sequences of Schrödinger means in $\mathbb{R}^{2}$
论文作者
论文摘要
我们考虑schrödinger的点融合表示$ e^{it_ {n}δ} f(x)$ for $ f \ in H^{s}(\ Mathbb {r}^{2})$,并减少序列$ \ \ \ {t_ {n} {n} \} \ n = 1} = 1} $ {主要定理改善了[Sjölin,JFAA,2018]和[Sjölin-Strömberg,JMAA,2020]的先前结果,以$ \ MATHBB {r}^{2} $。这项研究基于研究Schrödinger型最大功能的性质,与高斯曲率消失的超曲面有关。
We consider pointwise convergence of Schrödinger means $e^{it_{n}Δ}f(x)$ for $f \in H^{s}(\mathbb{R}^{2})$ and decreasing sequences $\{t_{n}\}_{n=1}^{\infty}$ converging to zero. The main theorem improves the previous results of [Sjölin, JFAA, 2018] and [Sjölin-Strömberg, JMAA, 2020] in $\mathbb{R}^{2}$. This study is based on investigating properties of Schrödinger type maximal functions related to hypersurfaces with vanishing Gaussian curvature.