论文标题

局部对图统计的私人分析

Locally Differentially Private Analysis of Graph Statistics

论文作者

Imola, Jacob, Murakami, Takao, Chaudhuri, Kamalika

论文摘要

图形的差异分析被广泛用于从敏感图中释放统计信息,同时仍保留用户隐私。但是,大多数现有的算法都处于集中式隐私模型中,在该模型中,受信任的数据策展人保存整个图。由于该模型提出了许多隐私和安全问题,例如策展人的可信度和数据泄露的可能性,因此希望在没有服务器保存整个图表的更分散的本地模型中考虑算法。 在这项工作中,我们考虑了一个本地模型,并提出了用于计算子图的算法 - 使用LDP(本地差异隐私)分析图中分析连接模式的基本任务。对于三角计数,我们提出了使用一轮和两轮相互作用的算法,并表明额外的一轮可以显着改善该实用性。对于$ k $ -STAR计数,我们提出了一种算法,该算法在非相互作用的本地模型中达到了订单最佳估计错误。我们为一般图形统计信息(包括三角形计数和$ k $ -STAR计数)的估计误差提供了新的较低限制。最后,我们在两个真实数据集上执行了广泛的实验,并表明确实可以准确地估算当地差异隐私模型中的子图计数。

Differentially private analysis of graphs is widely used for releasing statistics from sensitive graphs while still preserving user privacy. Most existing algorithms however are in a centralized privacy model, where a trusted data curator holds the entire graph. As this model raises a number of privacy and security issues -- such as, the trustworthiness of the curator and the possibility of data breaches, it is desirable to consider algorithms in a more decentralized local model where no server holds the entire graph. In this work, we consider a local model, and present algorithms for counting subgraphs -- a fundamental task for analyzing the connection patterns in a graph -- with LDP (Local Differential Privacy). For triangle counts, we present algorithms that use one and two rounds of interaction, and show that an additional round can significantly improve the utility. For $k$-star counts, we present an algorithm that achieves an order optimal estimation error in the non-interactive local model. We provide new lower-bounds on the estimation error for general graph statistics including triangle counts and $k$-star counts. Finally, we perform extensive experiments on two real datasets, and show that it is indeed possible to accurately estimate subgraph counts in the local differential privacy model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源