论文标题

使用深度学习来提高二进制黑洞合并在高级LIGO数据中的重要性:GW151216的确认

Improving significance of binary black hole mergers in Advanced LIGO data using deep learning : Confirmation of GW151216

论文作者

Jadhav, Shreejit, Mukund, Nikhil, Gadre, Bhooshan, Mitra, Sanjit, Abraham, Sheelu

论文摘要

我们提出了一种基于机器学习(ML)的新型策略,以从地面重力波(GW)观测器数据中搜索二进制黑洞(BBH)合并。这是第一次基于ML的搜索,它不仅在第一个GW瞬态目录(GWTC-1)中恢复了所有紧凑型二进制合并(CBC),而且还通过将新的一致排名统计量(MLSTAT)用于GWTC-1的标准分析,从而使GW151216的所有紧凑型二进制凝聚力(GWTC-1)都可以清晰地检测到GW151216。在CBC搜索中,减少陆地和仪器瞬变的污染,从而通过触发大量错误警报来创造大声的噪声背景,这对于提高检测真实事件的灵敏度至关重要。庞大的数据和大量预期检测也促使使用ML技术。我们执行转移学习来训练一个预先训练的深神经网络“ InceptionV3”,以及课程学习,通过分析其连续的小波变换(CWT)地图来区分GW信号和嘈杂事件。 MLSTAT将来自该ML分类器的信息合并到标准PycBC搜索使用的一致搜索可能性中。这至少会导致对先前“低显着性”事件GW151012,GW170729和GW151216的逆假警报率(IFAR)的数量级改善。我们还使用SEOBNRV4HM_ROM执行GW151216的参数估计。我们进行了一项注射研究,以表明MLSTAT为所有紧凑型二元融合的晚期Ligo的检测敏感性带来了可观的改善。对于低chirp肿块(0.8-5 msun),敏感体积的平均改善约为10%,较高质量(5-50 msun)的平均改善约为30%。这项工作证明了MLSTAT在当前数据中找到新来源的巨大潜力和准备,以及在类似搜索中适应其适应性的可能性。

We present a novel Machine Learning (ML) based strategy to search for binary black hole (BBH) mergers in data from ground-based gravitational wave (GW) observatories. This is the first ML-based search that not only recovers all the compact binary coalescences (CBCs) in the first GW transients catalog (GWTC-1), but also makes a clean detection of GW151216 by only adding a new coincident ranking statistic (MLStat) to a standard analysis that was used for GWTC-1. In CBC searches, reducing contamination by terrestrial and instrumental transients, which create a loud noise background by triggering numerous false alarms, is crucial to improving the sensitivity for detecting true events. The sheer volume of data and a large number of expected detections also prompts the use of ML techniques. We perform transfer learning to train "InceptionV3", a pre-trained deep neural network, along with curriculum learning to distinguish GW signals from noisy events by analysing their continuous wavelet transform (CWT) maps. MLStat incorporates information from this ML classifier into the coincident search likelihood used by the standard PyCBC search. This leads to at least an order of magnitude improvement in the inverse false-alarm-rate (IFAR) for the previously "low significance" events GW151012, GW170729 and GW151216. We also perform the parameter estimation of GW151216 using SEOBNRv4HM_ROM. We carry out an injection study to show that MLStat brings substantial improvement to the detection sensitivity of Advanced LIGO for all compact binary coalescences. The average improvement in the sensitive volume is ~10% for low chirp masses (0.8-5 Msun), and ~30% for higher masses (5-50 Msun). This work demonstrates the immense potential and readiness of MLStat for finding new sources in current data and the possibility of its adaptation in similar searches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源