论文标题

通过正交向量改进Schroeppel和Shamir的算法以获取子集总和

Improving Schroeppel and Shamir's Algorithm for Subset Sum via Orthogonal Vectors

论文作者

Nederlof, Jesper, Węgrzycki, Karol

论文摘要

我们提出了一个$ \ MATHCAL {O}^\ Star(2^{0.5n})$时间和$ \ Mathcal {O}^\ Star(2^{0.249999n})$ space随机算法,用于求解与$ n $ Integers解决worst-casase casase casase casase subset subs Instances cob $ n $ integers cast。这是对长期的$ \ MATHCAL {O}^\ Star(2^{n/2})$时间和$ \ Mathcal {O}^\ Star(2^{N/4})$ Space Algorithm的首次改进。 我们分为两个步骤违反了这一差距:(1)我们向正交矢量问题(OV)提出了空间有效的降低,这是细粒度复杂性中最中心的问题之一。减少是通过复杂的Schroeppel和Shamir方法的复杂组合,以及Howgrave-Graham和Joux(Eurocrypt 2010)提出的表示技术,用于设计平均案例制度的子集总和算法。 (2)我们为OV提供了一种算法,该算法在$ \ {0,1,1 \}^d $中以$ n $中的$ n $中的一个正交对,并带有支撑尺寸$ d/4 $ in PITION $ \ tilde {o} {o}(O}(n \ cdot2^d/\ binom {d/\ binom {d/\ binom {d} d/4} d/4})$。我们的OV算法基于Fomin,Lokshtanov,Panolan和Saurabh开发的代表性家庭框架(J. ACM 2016)。 我们的还原揭示了子集总和与OV之间的奇怪紧密关系,因为我们的OV算法的任何改进都将暗示对Schroeeppel和Shamir的运行时间的改善,这也是一个长期存在的开放问题。

We present an $\mathcal{O}^\star(2^{0.5n})$ time and $\mathcal{O}^\star(2^{0.249999n})$ space randomized algorithm for solving worst-case Subset Sum instances with $n$ integers. This is the first improvement over the long-standing $\mathcal{O}^\star(2^{n/2})$ time and $\mathcal{O}^\star(2^{n/4})$ space algorithm due to Schroeppel and Shamir (FOCS 1979). We breach this gap in two steps: (1) We present a space efficient reduction to the Orthogonal Vectors Problem (OV), one of the most central problem in Fine-Grained Complexity. The reduction is established via an intricate combination of the method of Schroeppel and Shamir, and the representation technique introduced by Howgrave-Graham and Joux (EUROCRYPT 2010) for designing Subset Sum algorithms for the average case regime. (2) We provide an algorithm for OV that detects an orthogonal pair among $N$ given vectors in $\{0,1\}^d$ with support size $d/4$ in time $\tilde{O}(N\cdot2^d/\binom{d}{d/4})$. Our algorithm for OV is based on and refines the representative families framework developed by Fomin, Lokshtanov, Panolan and Saurabh (J. ACM 2016). Our reduction uncovers a curious tight relation between Subset Sum and OV, because any improvement of our algorithm for OV would imply an improvement over the runtime of Schroeppel and Shamir, which is also a long standing open problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源