论文标题
领先的非线性潮汐效应和散射幅度
Leading Nonlinear Tidal Effects and Scattering Amplitudes
论文作者
论文摘要
我们将两体哈密顿量和相关的艾科纳尔阶段介绍给领先的孟沃斯基阶阶,用于无限的许多潮汐变形,这些潮汐变形由具有曲率张量的任意功率的操作员描述。动量和位置空间中的散射幅度提供了系统的互补方法。对于描述对外部引力场的线性响应的潮汐算子二次算子,我们使用具有任意数量的衍生物的算子的基础来确定领先的后孔科斯基贡献,这些衍生物是与世界线多台算子一对一的对应关系。明确的示例用于表明,相同的技术适用于两个物体与旋转粒子相互作用,为此,我们发现了具有任意数量衍生物的曲率潮汐算子中二次二次贡献的主要贡献,以及有效的一般相对性的现场理论扩展。我们还注意到,高维操作员的领先的后水后订单贡献表现出双重拷贝关系。最后,我们评论高阶校正的结构。
We present the two-body Hamiltonian and associated eikonal phase, to leading post-Minkowskian order, for infinitely many tidal deformations described by operators with arbitrary powers of the curvature tensor. Scattering amplitudes in momentum and position space provide systematic complementary approaches. For the tidal operators quadratic in curvature, which describe the linear response to an external gravitational field, we work out the leading post-Minkowskian contributions using a basis of operators with arbitrary numbers of derivatives which are in one-to-one correspondence with the worldline multipole operators. Explicit examples are used to show that the same techniques apply to both bodies interacting tidally with a spinning particle, for which we find the leading contributions from quadratic in curvature tidal operators with an arbitrary number of derivatives, and to effective field theory extensions of general relativity. We also note that the leading post-Minkowskian order contributions from higher-dimension operators manifest double-copy relations. Finally, we comment on the structure of higher-order corrections.