论文标题
在随机数据丢失下设计和控制网络系统的定期调度和控制
Design of periodic scheduling and control for networked systems under random data loss
论文作者
论文摘要
本文涉及网络控制系统(NCSS),其共享网络的通信能力有限,并且容易受到数据损失。我们假设在(n)植物中,只有(m <n)植物可以随时与其控制器进行通信。另外,在任何时候,在任何时候,在具有概率(P)的通道中丢失了控件输入。我们的贡献是三倍。首先,我们在植物的开环和闭环动力学上确定了必要和充分的条件,这些条件确保存在纯粹依赖时间依赖的周期性调度序列,在该序列下,为所有可接受的数据损失信号保留了每种植物的稳定性。其次,鉴于植物的开环和闭环动力学,共享网络的相关参数以及调度序列的时期,我们提出了一种算法,该算法可以验证我们的稳定性条件,如果满足,则设计稳定调度序列。否则,该算法报告了具有给定时期和稳定性边缘的稳定周期性调度顺序的不存在。第三,鉴于植物矩阵,网络的参数和调度顺序的周期,我们提出了一种设计静态状态反馈控制器的算法,使我们的稳定性条件得到满足。我们分析的主要设备是NC中单个植物的开关系统表示,其开关信号是时间均匀的马尔可夫链。我们的稳定性条件依赖于满足某些(以)平等性的对称和正定矩阵的存在。
This paper deals with Networked Control Systems (NCSs) whose shared networks have limited communication capacity and are prone to data losses. We assume that among (N) plants, only (M < N) plants can communicate with their controllers at any time instant. In addition, a control input, at any time instant, is lost in a channel with a probability (p). Our contributions are threefold. First, we identify necessary and sufficient conditions on the open-loop and closed-loop dynamics of the plants that ensure existence of purely time-dependent periodic scheduling sequences under which stability of each plant is preserved for all admissible data loss signals. Second, given the open-loop and closed-loop dynamics of the plants, relevant parameters of the shared network and a period for the scheduling sequence, we present an algorithm that verifies our stability conditions and if satisfied, designs stabilizing scheduling sequences. Otherwise, the algorithm reports non-existence of a stabilizing periodic scheduling sequence with the given period and stability margins. Third, given the plant matrices, the parameters of the network and a period for the scheduling sequence, we present an algorithm that designs static state-feedback controllers such that our stability conditions are satisfied. The main apparatus for our analysis is a switched systems representation of the individual plants in an NCS whose switching signals are time-inhomogeneous Markov chains. Our stability conditions rely on the existence of sets of symmetric and positive definite matrices that satisfy certain (in)equalities.