论文标题

一种对称吸引子分类提升算法的平均游戏

A symmetric attractor-decomposition lifting algorithm for parity games

论文作者

Jurdziński, Marcin, Morvan, Rémi, Ohlmann, Pierre, Thejaswini, K. S.

论文摘要

提升算法解决平等游戏的进度测量具有最差的渐近运行时,但受其不对称性质的限制,并且从Czerwiński等人的工作中得知。 (2018年)要受到匹配的准多项式下限,从通用树的组合遗传下继承。 Parys(2019)开发了一种巧妙的准多项式麦克诺顿 - Zielonka风格的算法,以及Lehtinen等。 (2019年)提高了最差的运行时间。 Jurdziński和Morvan(2020)最近提出了一种基于通用的吸引子算法,将第二类准多项式解决方案形式化用于解决平等游戏,这些解决方案在通用树的规模上具有典型的典型性。首先,我们将迭代提升算法的框架调整为基于吸引子的策略。其次,我们在这种情况下设计了一种对称的举重算法,其中两个提起迭代,一个针对每个玩家,以递归方式相互加速。对称算法至少在最差的情况下表现出色,同时绕过它们固有的不对称限制。第三,我们认为,基于通用吸引子的Jurdzinski和Morvan(2020)的行为可以通过我们对称的提升算法的特定减速来重现,其中算法收集的某些信息被反复地删除。这产生了对McNaughton-Zielonka风格的算法的新颖解释,因为进步量迭代迭代(带有故意的背靠背),进一步加强了迄今为止所有已知的准多种算法之间的联系。

Progress-measure lifting algorithms for solving parity games have the best worst-case asymptotic runtime, but are limited by their asymmetric nature, and known from the work of Czerwiński et al. (2018) to be subject to a matching quasi-polynomial lower bound inherited from the combinatorics of universal trees. Parys (2019) has developed an ingenious quasi-polynomial McNaughton- Zielonka-style algorithm, and Lehtinen et al. (2019) have improved its worst-case runtime. Jurdziński and Morvan (2020) have recently brought forward a generic attractor-based algorithm, formalizing a second class of quasi-polynomial solutions to solving parity games, which have runtime quadratic in the size of universal trees. First, we adapt the framework of iterative lifting algorithms to computing attractor-based strategies. Second, we design a symmetric lifting algorithm in this setting, in which two lifting iterations, one for each player, accelerate each other in a recursive fashion. The symmetric algorithm performs at least as well as progress-measure liftings in the worst-case, whilst bypassing their inherent asymmetric limitation. Thirdly, we argue that the behaviour of the generic attractor-based algorithm of Jurdzinski and Morvan (2020) can be reproduced by a specific deceleration of our symmetric lifting algorithm, in which some of the information collected by the algorithm is repeatedly discarded. This yields a novel interpretation of McNaughton-Zielonka-style algorithms as progress-measure lifting iterations (with deliberate set-backs), further strengthening the ties between all known quasi-polynomial algorithms to date.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源