论文标题
$λ$ cdm中的向量模式:来自相对论$ n $模拟的暗物质光环中的引用潜力
Vector modes in $Λ$CDM: the gravitomagnetic potential in dark matter haloes from relativistic $N$-body simulations
论文作者
论文摘要
我们基于使用自适应网状细化的高分辨率仿真,研究了$λ$ CDM的重力和速度场的横向模式。我们研究了低红移的暗物质速度场中涡度的产生,从而在一系列尺度上提供了其功率谱的形状和演变。通过分析牛顿模拟中不存在的引力磁性矢量潜力,在暗物质中,质量从$ \ sim10^{12.5} 〜h^{ - 1} { - 1} {m} {m} _ {\ odot} $ {\ odot} $它的幅度与光环质量相关,在内部区域达到峰值。然而,平均而言,其与标量重力电势的比率仍然相当恒定,低于百分比,随着红移的速度大致降低,并且对光晕质量的依赖性较弱。此外,我们表明,光环中的引力加速度朝核心峰达到峰值,并在模拟的最大光环中达到了近10美元^{ - 10} $ $ h $ cm/s $^2 $。但是,无论光环质量如何,引力磁力和标准重力力的大小之间的比率通常在光环内部的$ 10^{ - 5} $级别左右,同样在没有明显的半径依赖性的情况下再次。该结果证实了引力磁效应对结构的形成具有可忽略的影响,即使对于最庞大的结构,尽管其在低密度区域中的行为仍有待探索。同样,对观察的影响在将来仍有待理解。
We investigate the transverse modes of the gravitational and velocity fields in $Λ$CDM, based on a high-resolution simulation performed using the adaptive-mesh refinement general-relativistic $N$-body code GRAMSES. We study the generation of vorticity in the dark matter velocity field at low redshift, providing fits to the shape and evolution of its power spectrum over a range of scales. By analysing the gravitomagnetic vector potential, which is absent in Newtonian simulations, in dark matter haloes with masses ranging from $\sim10^{12.5}~h^{-1}{M}_{\odot}$ to $\sim10^{15}~h^{-1}{M}_{\odot}$, we find that its magnitude correlates with the halo mass, peaking in the inner regions. Nevertheless, on average, its ratio against the scalar gravitational potential remains fairly constant, below percent level, decreasing roughly linearly with redshift and showing a weak dependence on halo mass. Furthermore, we show that the gravitomagnetic acceleration in haloes peaks towards the core and reaches almost $10^{-10}$ $h$ cm/s$^2$ in the most massive halo of the simulation. However, regardless of the halo mass, the ratio between the magnitudes of the gravitomagnetic force and the standard gravitational force is typically at around the $10^{-5}$ level inside the haloes, again without significant radius dependence. This result confirms that the gravitomagnetic effects have a negligible impact on structure formation, even for the most massive structures, although its behaviour in low density regions remains to be explored. Likewise, the impact on observations remains to be understood in the future.