论文标题
可生物降解的聚合物微/纳米结构,具有内在的防配合/抗微生物特性:与受损的皮肤和其他生物医学应用相关
Biodegradable Polymeric Micro/Nano-Structures with Intrinsic Antifouling/Antimicrobial Properties:Relevance in Damaged Skin and Other Biomedical Applications
论文作者
论文摘要
植入的生物医学装置的细菌定殖是与医疗相关感染的原因,估计在欧洲每年880万。许多感染起源于受损的皮肤,使微生物利用伤害和手术通道作为通道到达植入物部位和内部器官的通道。因此,对于许多与生物材料相关的手术程序的成功,对皮肤损伤的有效治疗非常需要。由于对抗生素的耐药性,新的抗菌治疗对于控制医学院感染而成为手术和手术后并发症至关重要。由于生物材料固有的特性(例如,超级疏水性),特别是不使用药物,表面涂层可以避免生物污染和细菌定植,这可能会引起细菌耐药性。这篇综述的重点是强调可降解的聚合物微型和纳米结构的新兴作用,这些微型和纳米结构显示出内在的防腐和抗菌特性,并具有针对生物医学应用的特殊外观,以处理皮肤和皮肤损伤。生物材料拥有的内在特性包括三个主要类别:(1)物理机械,(2)化学物质和(3)静电。据报道,据报道,耳朵假体和乳房植入物的临床相关性。收集和讨论该领域的最新结果将有助于开发更好地表现基于生物材料的抗菌策略,这对于预防感染很有用。
Bacterial colonization ofimplanted biomedical devicesis themain cause of healthcare-associated infections, estimated to be 8.8 million per year in Europe. Many infections originate from damaged skin, which lets microorganisms exploit injuries and surgical accesses as passageways to reach the implant site and inner organs. Therefore, an effective treatment of skin damage is highly desirable for the success of many biomaterial-related surgical procedures. Due to gained resistance to antibiotics, new antibacterial treatments are becoming vital to control nosocomial infections arising as surgical and post-surgical complications. Surface coatings can avoid biofouling and bacterial colonization thanks to biomaterial inherent properties (e.g., super hydrophobicity), specifically without using drugs, which may cause bacterial resistance. The focus of this review is to highlight the emerging role of degradable polymeric micro- and nano-structures that show intrinsic antifouling and antimicrobial properties, with a special outlook towards biomedical applications dealing with skin and skin damage. The intrinsic properties owned by the biomaterials encompass three main categories: (1) physical-mechanical, (2) chemical, and (3) electrostatic. Clinical relevance in ear prostheses and breast implants is reported. Collecting and discussing the updated outcomes in this field would help the development of better performing biomaterial-based antimicrobial strategies, which are useful to prevent infections.