论文标题

关于与Sierpiński和Riesel编号相关的二项式系数

On binomial coefficients associated with Sierpiński and Riesel numbers

论文作者

Armbruster, Ashley, Barger, Grace, Bykova, Sofya, Dvorachek, Tyler, Eckard, Emily, Harrington, Joshua, Sun, Yewen, Wong, Tony W. H.

论文摘要

在本文中,我们研究了Sierpiński数字和Riesel数字作为二项式系数的存在。我们表明,对于任何奇怪的积极整数$ r $,都存在$ \ binom {k} {r} $的许多Sierpiński编号和Riesel编号。令$ s(x)$为正整数的数量$ r $满足$ 1 \ leq r \ leq x $,$ \ binom {k} {r} {r} $是无限的$ k $的sierpiński数字。我们进一步表明,$ s(x)/x $的值随着$ x $倾向于无穷大。还考虑了对$ a $-sierpiński数字和$ a $ a-riesel号码的概括。特别是,我们证明存在无限的许多正整数$ r $,因此$ \ binom {k} {r} $同时是一个基础$ a $ a $-sierpiński和base $ a $ rieseel number,用于无限的$ k $。

In this paper, we investigate the existence of Sierpiński numbers and Riesel numbers as binomial coefficients. We show that for any odd positive integer $r$, there exist infinitely many Sierpiński numbers and Riesel numbers of the form $\binom{k}{r}$. Let $S(x)$ be the number of positive integers $r$ satisfying $1\leq r\leq x$ for which $\binom{k}{r}$ is a Sierpiński number for infinitely many $k$. We further show that the value $S(x)/x$ gets arbitrarily close to 1 as $x$ tends to infinity. Generalizations to base $a$-Sierpiński numbers and base $a$-Riesel numbers are also considered. In particular, we prove that there exist infinitely many positive integers $r$ such that $\binom{k}{r}$ is simultaneously a base $a$-Sierpiński and base $a$-Riesel number for infinitely many $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源