论文标题
使用云量子计算机接口的误解量子逻辑优化
Error-robust quantum logic optimization using a cloud quantum computer interface
论文作者
论文摘要
我们描述了使用基于云的量子计算机和模拟层编程访问访问的实验性设计和部署错误的单量操作。我们设计了实现目标操作的数值优化脉冲,并对各种误差过程表现出鲁棒性,包括降低噪声,控制振幅中的不稳定性和串扰。使用包含设备模型和与物理相关的约束的柔性优化软件包进行脉冲优化(例如,在稀释冰箱外壳IBM量子硬件的传输线上的带宽限制)。我们介绍了通过qiskit脉冲对脉冲波形进行转换和校准的转换和校准的技术,并将性能与五克设备上的硬件默认拖动脉冲进行比较。实验测量结果表明,默认的阻力脉冲表现出相干误差的数量级,比列表的随机基准测量值大。针对这些错误的解决方案旨在超过多个指标的所有量子位的硬件默认脉冲。实验测量结果表明绩效提高至:$ \ sim10 \ times $ $单量门相干 - 校正; $ \ sim5 \ times $五个量子系统的平均相干 - 校正降低; $ \ sim10 \ times $ $增加校准窗口到有效的脉冲校准一周; $ \ sim12 \ times $降低Qubits和随着时间的变化;在完全并行化的操作的情况下,最多$ \ sim9 \ times $减少了单量门错误(包括串扰)。随机基准测试揭示了由与列表的$ t_ {1} $限制一致的优化脉冲构建的Clifford门的错误率,并演示了结果在与抑制相干 - errors相关的随机化方面的分布缩小。
We describe an experimental effort designing and deploying error-robust single-qubit operations using a cloud-based quantum computer and analog-layer programming access. We design numerically-optimized pulses that implement target operations and exhibit robustness to various error processes including dephasing noise, instabilities in control amplitudes, and crosstalk. Pulse optimization is performed using a flexible optimization package incorporating a device model and physically-relevant constraints (e.g. bandwidth limits on the transmission lines of the dilution refrigerator housing IBM Quantum hardware). We present techniques for conversion and calibration of physical Hamiltonian definitions to pulse waveforms programmed via Qiskit Pulse and compare performance against hardware default DRAG pulses on a five-qubit device. Experimental measurements reveal default DRAG pulses exhibit coherent errors an order of magnitude larger than tabulated randomized-benchmarking measurements; solutions designed to be robust against these errors outperform hardware-default pulses for all qubits across multiple metrics. Experimental measurements demonstrate performance enhancements up to: $\sim10\times$ single-qubit gate coherent-error reduction; $\sim5\times$ average coherent-error reduction across a five qubit system; $\sim10\times$ increase in calibration window to one week of valid pulse calibration; $\sim12\times$ reduction gate-error variability across qubits and over time; and up to $\sim9\times$ reduction in single-qubit gate error (including crosstalk) in the presence of fully parallelized operations. Randomized benchmarking reveals error rates for Clifford gates constructed from optimized pulses consistent with tabulated $T_{1}$ limits, and demonstrates a narrowing of the distribution of outcomes over randomizations associated with suppression of coherent-errors.