论文标题

样品空间的几何形状

Geometry of Sample Spaces

论文作者

Harms, Philipp, Michor, Peter W., Pennec, Xavier, Sommer, Stefan

论文摘要

在统计数据中,独立的,相同分布的随机样品没有自然顺序,其统计数据通常在其订单排列方面是不变的。因此,可以将$ n $ -n $样本示例视为$ m^n $ modulo置换组的商空间的元素。本文将样本空间的定义和轨道类型的相关概念作为开发统计的几何观点的起点。我们旨在得出一个一般数学环境,用于研究从光滑的riemannian歧管到一般分层空间的空间中经验和种群手段的行为。当$ m $分别是歧管或路径 - 金属空间时,我们充分描述了样品空间的轨道和路径线结构。即使$ m $是欧几里得人,这些结果也不平淡。我们表明,无限的样本空间存在于Gromov-Hausdorff类型的感觉中,并且与$ M $上的Wasserstein概率分布空间相吻合。我们在Wasserstein Space中展示了Fréchet的手段和$ k $ -MEANS作为公制投影或$ K $ -Skeleta,我们定义了一种新的,更一般的Polyeans概念。通过度量投影的这种几何表征同样适用于样本和种群手段,我们使用它来建立诸如一致性和渐近正态性等多米亚人的渐近特性。

In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an $n$-sample in a space $M$ can be considered as an element of the quotient space of $M^n$ modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when $M$ is a manifold or path-metric space, respectively. These results are non-trivial even when $M$ is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on $M$. We exhibit Fréchet means and $k$-means as metric projections onto 1-skeleta or $k$-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源