论文标题

在曲曲面投影性超曲面上的添加剂动作

Additive actions on toric projective hypersurfaces

论文作者

Shafarevich, Anton

论文摘要

令$ \ mathbb {k} $为特征零的代数封闭字段,$ \ mathbb {g} _a $是$ \ mathbb {k} $的添加组。 We say that an irreducible algebraic variety $X$ of dimension $n$ over the field $\mathbb{K}$ admits an additive action if there is a regular action of the group $\mathbb{G}_a^n = \mathbb{G}_a \times \ldots \times \mathbb{G}_a$ ($n$ times) on $X$带有开放的轨道。在本文中,我们发现所有投射的曲曲面超曲面都承认添加剂动作。

Let $\mathbb{K}$ be an algebraically closed field of characteristic zero and $\mathbb{G}_a$ be the additive group of $\mathbb{K}$. We say that an irreducible algebraic variety $X$ of dimension $n$ over the field $\mathbb{K}$ admits an additive action if there is a regular action of the group $\mathbb{G}_a^n = \mathbb{G}_a \times \ldots \times \mathbb{G}_a$ ($n$ times) on $X$ with an open orbit. In this paper we find all projective toric hypersurfaces admitting additive action.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源