论文标题
关于最接近的邻居分类器在特征转换上的收敛性
On Convergence of Nearest Neighbor Classifiers over Feature Transformations
论文作者
论文摘要
K-Nearest邻居(KNN)分类器是一种基本的非参数机器学习算法。但是,众所周知,它遭受了维数的诅咒,这就是为什么在实践中经常在(预训练)特征转换之上应用KNN分类器的原因。从理论的角度来看,旨在理解KNN分类器的大多数理论结果都是为原始特征空间得出的。这导致了我们对KNN的理论理解与其实际应用之间的出现差距。在本文中,我们朝着弥合这一差距迈出了第一步。我们提供了有关转化特征的KNN分类器的收敛速率的新分析。该分析需要深入了解连接转换空间和原始特征空间的属性。更确切地说,我们建立了转换空间的两个关键特性的融合:(1)安全性 - 一个人如何从转化的空间中恢复原始的后部,以及(2)平滑度 - 此恢复功能的复杂程度。根据我们的结果,我们能够解释为什么某些(预训练)特征转换比其他分类器更适合KNN分类器。我们从经验上验证,这两个属性都对30个特征转换的KNN收敛性有6个基准数据集的影响,从视觉到文本域。
The k-Nearest Neighbors (kNN) classifier is a fundamental non-parametric machine learning algorithm. However, it is well known that it suffers from the curse of dimensionality, which is why in practice one often applies a kNN classifier on top of a (pre-trained) feature transformation. From a theoretical perspective, most, if not all theoretical results aimed at understanding the kNN classifier are derived for the raw feature space. This leads to an emerging gap between our theoretical understanding of kNN and its practical applications. In this paper, we take a first step towards bridging this gap. We provide a novel analysis on the convergence rates of a kNN classifier over transformed features. This analysis requires in-depth understanding of the properties that connect both the transformed space and the raw feature space. More precisely, we build our convergence bound upon two key properties of the transformed space: (1) safety -- how well can one recover the raw posterior from the transformed space, and (2) smoothness -- how complex this recovery function is. Based on our result, we are able to explain why some (pre-trained) feature transformations are better suited for a kNN classifier than other. We empirically validate that both properties have an impact on the kNN convergence on 30 feature transformations with 6 benchmark datasets spanning from the vision to the text domain.