论文标题
关于Jeśmanowicz猜想的特殊解决方案
On The Exceptional solutions of Jeśmanowicz' conjecture
论文作者
论文摘要
令$(a,b,c)$为原始的毕达哥拉斯三重。设置$ a = m^2-n^2 $,$ b = 2mn $,$ c = m^2+n^2 $带有$ m $和$ n $ pastic coprime Integers,$ m> n $和$ m \ not \ equiv n \ pmod 2 $。 Jeśmanowicz的一个著名猜想断言,对Diophantine方程的唯一积极解决方案$ a^x+b^y = C^z $是$(x,x,y,z)(2,2,2)(2,2,2)(2,2,2)(2,2,2)。在本说明中,我们将证明,对于任何$ n> 0 $,对于所有$ n> $ n y ynement ynemption n ost y yf $ c(n)> n nivention n osportion n yf the Esportion nivation n yf After $ c(n),如果$ c(n)> n)(n)> n)(n)> n) $ x $,$ y $和$ z $甚至是。我们的结果改善了Fu和Yang [11]的结果。作为一个应用程序,我们将表明,如果$ 4 \ mid \!\ mid m $和$ m> c(n)$jeśmanowicz的猜想所保持。
Let $(a,b,c)$ be a primitive Pythagorean triple. Set $a=m^2-n^2$,$b=2mn$, and $c=m^2+n^2$ with $m$ and $n$ positive coprime integers, $m>n $ and $ m \not \equiv n \pmod 2$. A famous conjecture of Jeśmanowicz asserts that the only positive solution to the Diophantine equation $a^x+b^y=c^z$ is $(x,y,z)(2,2,2).$ In this note, we will prove that for any $n>0$ there exists an explicit constant $c(n)>0$ such that if $m> c(n)$, then the above equation has no exceptional solution when all $x$,$y$ and $z$ are even. Our result improves that of Fu and Yang [11]. As an application, we will show that if $4 \mid\!\mid m$ and $m > c(n)$ Jeśmanowicz' conjecture holds.