论文标题

HS-RESNET:卷积神经网络上的层次结构块

HS-ResNet: Hierarchical-Split Block on Convolutional Neural Network

论文作者

Yuan, Pengcheng, Lin, Shufei, Cui, Cheng, Du, Yuning, Guo, Ruoyu, He, Dongliang, Ding, Errui, Han, Shumin

论文摘要

本文介绍了名为层次结构块的代表性块,可以将其视为插入式块以升级现有的卷积神经网络,可在网络中显着提高模型性能。层次结构块包含一个单个残差块中的许多层次拆分和连接连接。我们发现多尺度功能对于众多视觉任务至关重要。此外,层次结构块非常灵活和高效,为不同的应用程序提供了巨大的潜在网络体系结构空间。在这项工作中,我们提出了一个基于层次结构块的常见主链,用于任务:图像分类,对象检测,实例分割和语义图像分割/解析。与基线相比,我们的方法对所有这些核心任务显示出显着改进。如图1所示,对于图像分类,我们的50层网络(HS-Resnet50)在ImagEnet-1K数据集上具有竞争潜伏期,达到了81.28%的TOP-1准确性。它还优于大多数最先进的模型。源代码和模型将在以下网址提供:https://github.com/paddlepaddle/paddleclas

This paper addresses representational block named Hierarchical-Split Block, which can be taken as a plug-and-play block to upgrade existing convolutional neural networks, improves model performance significantly in a network. Hierarchical-Split Block contains many hierarchical split and concatenate connections within one single residual block. We find multi-scale features is of great importance for numerous vision tasks. Moreover, Hierarchical-Split block is very flexible and efficient, which provides a large space of potential network architectures for different applications. In this work, we present a common backbone based on Hierarchical-Split block for tasks: image classification, object detection, instance segmentation and semantic image segmentation/parsing. Our approach shows significant improvements over all these core tasks in comparison with the baseline. As shown in Figure1, for image classification, our 50-layers network(HS-ResNet50) achieves 81.28% top-1 accuracy with competitive latency on ImageNet-1k dataset. It also outperforms most state-of-the-art models. The source code and models will be available on: https://github.com/PaddlePaddle/PaddleClas

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源