论文标题

完全无监督的人重新识别通过对比度学习

Fully Unsupervised Person Re-identification viaSelective Contrastive Learning

论文作者

Pang, Bo, Zhai, Deming, Jiang, Junjun, Liu, Xianming

论文摘要

人重新识别(REID)旨在在各种相机捕获的图像中搜索相同的身份人员。无监督的人里德(Reid)最近引起了很多关注,因为它无需大量的手动注释而起作用,因此显示出适应新条件的巨大潜力。表示学习在无监督的人里德(Reid)中起着至关重要的作用。在这项工作中,我们为无监督的特征学习提出了一个新颖的选择性对比学习框架。具体而言,与传统的对比学习策略不同,我们建议使用多种阳性和自适应采样的否定因素来定义对比度损失,从而能够学习具有更强身份歧视性表示的功能嵌入模型。此外,我们建议共同利用全球和本地功能来构建三个动态词典,其中全球和本地记忆库用于成对相似性计算,并将混合记忆库用于对比性损失定义。实验结果表明,与最先进的人相比,在无监督的人REID中,我们的方法具有优势。

Person re-identification (ReID) aims at searching the same identity person among images captured by various cameras. Unsupervised person ReID attracts a lot of attention recently, due to it works without intensive manual annotation and thus shows great potential of adapting to new conditions. Representation learning plays a critical role in unsupervised person ReID. In this work, we propose a novel selective contrastive learning framework for unsupervised feature learning. Specifically, different from traditional contrastive learning strategies, we propose to use multiple positives and adaptively sampled negatives for defining the contrastive loss, enabling to learn a feature embedding model with stronger identity discriminative representation. Moreover, we propose to jointly leverage global and local features to construct three dynamic dictionaries, among which the global and local memory banks are used for pairwise similarity computation and the mixture memory bank are used for contrastive loss definition. Experimental results demonstrate the superiority of our method in unsupervised person ReID compared with the state-of-the-arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源