论文标题
太阳冠状磁场从同步数据与AI生成的Farside外推
Solar Coronal Magnetic Field Extrapolation from Synchronic Data with AI-generated Farside
论文作者
论文摘要
太阳磁场在理解冠状现象的性质中起着关键作用。通常,全球冠状磁场是从光谱场中推断出来的,大约两周前,在前面进行了Farside数据。我们第一次使用前沿和人工智能(AI)在接近实际的时间基础上构建了全局磁场的外推(AI)。我们通过我们的深度学习模型(b)后面的太阳陆地关系天文台(立体声)和后面的三个通道远面观测产生了远面的磁图,该模型是通过前线太阳能动力学观测器观测器极端紫外线图像和磁力图训练的深度学习模型。对于前沿测试数据集,我们证明了生成的磁场分布与真实的磁场分布一致。不仅有活跃地区(ARS),而且太阳的安静地区。我们制作了全局磁场同步图,其中传统的Farside数据被我们模型产生的Farside数据所取代。同步图显示不仅显示AR的外观,而且在太阳表面上的消失也比以前更好。我们使用这些同步磁数据,使用电位源表面(PFSS)模型推断全局冠状场。我们表明,与传统方法相比,鉴于太阳活跃区和冠状孔,我们的结果与冠状观测更加一致。我们为研究太阳能电晕,地球球和太空天气的新方法提供了几个积极的前景。
Solar magnetic fields play a key role in understanding the nature of the coronal phenomena. Global coronal magnetic fields are usually extrapolated from photospheric fields, for which farside data is taken when it was at the frontside, about two weeks earlier. For the first time we have constructed the extrapolations of global magnetic fields using frontside and artificial intelligence (AI)-generated farside magnetic fields at a near-real time basis. We generate the farside magnetograms from three channel farside observations of Solar Terrestrial Relations Observatory (STEREO) Ahead (A) and Behind (B) by our deep learning model trained with frontside Solar Dynamics Observatory extreme ultraviolet images and magnetograms. For frontside testing data sets, we demonstrate that the generated magnetic field distributions are consistent with the real ones; not only active regions (ARs), but also quiet regions of the Sun. We make global magnetic field synchronic maps in which conventional farside data are replaced by farside ones generated by our model. The synchronic maps show much better not only the appearance of ARs but also the disappearance of others on the solar surface than before. We use these synchronized magnetic data to extrapolate the global coronal fields using Potential Field Source Surface (PFSS) model. We show that our results are much more consistent with coronal observations than those of the conventional method in view of solar active regions and coronal holes. We present several positive prospects of our new methodology for the study of solar corona, heliosphere, and space weather.