论文标题

TDRE:基于张量的基于张分解的方法提取

TDRE: A Tensor Decomposition Based Approach for Relation Extraction

论文作者

Zhao, Bin-Bin, Li, Liang, Zhang, Hui-Dong

论文摘要

提取实体对以及来自非结构化文本的关系类型是信息提取的基本子任务。大多数现有的联合模型都依赖于细粒标记方案或专注于共享嵌入参数。这些方法直接对多标签三重态的关节概率进行了建模,这些概率是提取具有所有关系类型的冗余三重态。但是,每个句子可能包含很少的关系类型。在本文中,我们首先将最终三重态提取结果模拟为富含每种关系类型的单词到单词对的三阶张量。为了获得包含关系的句子,我们引入了一个独立但联合培训关系分类模块。张量分解策略最终被用来分解具有预测的关系成分的三重态张量,从而省略了未预测的关系类型的计算。根据有效的分解方法,我们提出了基于张量分解的关系提取(TDRE)方法,该方法能够提取重叠的三胞胎并避免检测不必要的实体对。基准数据集NYT,CONLL04和ADE数据集的实验表明,所提出的方法的表现优于现有的强基础。

Extracting entity pairs along with relation types from unstructured texts is a fundamental subtask of information extraction. Most existing joint models rely on fine-grained labeling scheme or focus on shared embedding parameters. These methods directly model the joint probability of multi-labeled triplets, which suffer from extracting redundant triplets with all relation types. However, each sentence may contain very few relation types. In this paper, we first model the final triplet extraction result as a three-order tensor of word-to-word pairs enriched with each relation type. And in order to obtain the sentence contained relations, we introduce an independent but joint training relation classification module. The tensor decomposition strategy is finally utilized to decompose the triplet tensor with predicted relational components which omits the calculations for unpredicted relation types. According to effective decomposition methods, we propose the Tensor Decomposition based Relation Extraction (TDRE) approach which is able to extract overlapping triplets and avoid detecting unnecessary entity pairs. Experiments on benchmark datasets NYT, CoNLL04 and ADE datasets demonstrate that the proposed method outperforms existing strong baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源