论文标题
使用区块链确保制造
Securing Manufacturing Using Blockchain
论文作者
论文摘要
由于最近十年的工业控制系统(ICS)网络攻击的兴起,已经设计了各种安全框架用于异常检测。尽管高级ICS攻击使用顺序阶段来启动其最终攻击,但现有的异常检测方法只能监视单个数据源。因此,对多个安全数据的分析可以在工业网络中提供全面且全系统的异常检测。在本文中,我们为ICS提出了一个由两个阶段组成的ICS的异常检测框架:i)基于区块链的日志管理,其中以安全和分布的方式收集ICS设备的日志,以及ii)多源异常检测检测,该检测是使用多组分的深度学习分析区块链原木的,从而提供了多方面的深度学习。 我们使用两个ICS数据集验证了框架:出厂自动化数据集和安全的水处理(SWAT)数据集。这些数据集包含物理和网络级别的正常和异常流量。将我们的新框架的性能与单源机器学习方法进行了比较。我们框架的精度为95%,与单源异常检测器相当。
Due to the rise of Industrial Control Systems (ICSs) cyber-attacks in the recent decade, various security frameworks have been designed for anomaly detection. While advanced ICS attacks use sequential phases to launch their final attacks, existing anomaly detection methods can only monitor a single source of data. Therefore, analysis of multiple security data can provide comprehensive and system-wide anomaly detection in industrial networks. In this paper, we propose an anomaly detection framework for ICSs that consists of two stages: i) blockchain-based log management where the logs of ICS devices are collected in a secure and distributed manner, and ii) multi-source anomaly detection where the blockchain logs are analysed using multi-source deep learning which in turn provides a system wide anomaly detection method. We validated our framework using two ICS datasets: a factory automation dataset and a Secure Water Treatment (SWAT) dataset. These datasets contain physical and network level normal and abnormal traffic. The performance of our new framework is compared with single-source machine learning methods. The precision of our framework is 95% which is comparable with single-source anomaly detectors.