论文标题

CS2-NET:医学成像中曲线结构的深度学习分割

CS2-Net: Deep Learning Segmentation of Curvilinear Structures in Medical Imaging

论文作者

Mou, Lei, Zhao, Yitian, Fu, Huazhu, Liu, Yonghuai, Cheng, Jun, Zheng, Yalin, Su, Pan, Yang, Jianlong, Chen, Li, Frang, Alejandro F, Akiba, Masahiro, Liu, Jiang

论文摘要

从医学和生物医学图像中自动检测曲线结构,例如血管或神经纤维是与许多疾病管理相关的自动图像解释的至关重要的早期一步。这些曲线器官结构的形态变化的精确测量会告知临床医生,以了解例如心血管,肾脏,眼,肺和神经系统状况。在这项工作中,我们提出了一个通用和统一的卷积神经网络,用于分割曲线结构,并以几种2D/3D医学成像方式说明。我们引入了一个新的曲线结构分割网络(CS2-NET),该网络包括编码器中的自发机制和解码器,以学习曲线结构的丰富层次结构表示。使用两种类型的注意力模块 - 空间注意力和通道注意力 - 用于增强类间的歧视和阶层内反应能力,以将局部特征与其全局依赖性和归一化进一步整合在一起。此外,为了促进医学图像中曲线结构的分割,我们采用1x3和3x1卷积内核来捕获边界特征。 ...

Automated detection of curvilinear structures, e.g., blood vessels or nerve fibres, from medical and biomedical images is a crucial early step in automatic image interpretation associated to the management of many diseases. Precise measurement of the morphological changes of these curvilinear organ structures informs clinicians for understanding the mechanism, diagnosis, and treatment of e.g. cardiovascular, kidney, eye, lung, and neurological conditions. In this work, we propose a generic and unified convolution neural network for the segmentation of curvilinear structures and illustrate in several 2D/3D medical imaging modalities. We introduce a new curvilinear structure segmentation network (CS2-Net), which includes a self-attention mechanism in the encoder and decoder to learn rich hierarchical representations of curvilinear structures. Two types of attention modules - spatial attention and channel attention - are utilized to enhance the inter-class discrimination and intra-class responsiveness, to further integrate local features with their global dependencies and normalization, adaptively. Furthermore, to facilitate the segmentation of curvilinear structures in medical images, we employ a 1x3 and a 3x1 convolutional kernel to capture boundary features. ...

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源