论文标题

美元

$T^3$-Invariant Heterotic Hull-Strominger Solutions

论文作者

Acharya, Bobby Samir, Kinsella, Alex, Svanes, Eirik Eik

论文摘要

我们考虑了卡拉比YAU歧管上的杂丝串,该弦是承认Strominger-yau-Zaslow纤维化的。在$ t^3 $ - 导向中减少系统后,可以将Hermitian Yang-Mills条件重新解释为$ \ Mathbb {r}^3 $在满足特定共闭合条件下的复杂平面连接。我们给出了许多亚伯式和非阿布尔的例子,还通过非平凡的$α'$校正的杂音杂质体身份来计算几何形状上的后反应,其中包括对复杂平面连接方程的重要校正。这些都是$ t^3 \ times \ mathbb {r}^3 $上赫尔史密图系统的新的本地解决方案。我们还提出了一种与Abelian模型的Morse-Witten复合物相比,计算某些非阿布尔模型的频谱的方法。

We consider the heterotic string on Calabi-Yau manifolds admitting a Strominger-Yau-Zaslow fibration. Upon reducing the system in the $T^3$-directions, the Hermitian Yang-Mills conditions can then be reinterpreted as a complex flat connection on $\mathbb{R}^3$ satisfying a certain co-closure condition. We give a number of abelian and non-abelian examples, and also compute the back-reaction on the geometry through the non-trivial $α'$-corrected heterotic Bianchi identity, which includes an important correction to the equations for the complex flat connection. These are all new local solutions to the Hull-Strominger system on $T^3\times\mathbb{R}^3$. We also propose a method for computing the spectrum of certain non-abelian models, in close analogy with the Morse-Witten complex of the abelian models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源