论文标题

探索构象异构体选择方法对离子迁移率碰撞横截面预测的影响

Exploring the impacts of conformer selection methods on ion mobility collision cross section predictions

论文作者

Nielson, Felicity F., Colby, Sean M., Thomas, Dennis G., Renslow, Ryan S., Metz, Thomas O.

论文摘要

结构依赖性分子特性的预测,例如使用离子迁移率测量的碰撞横截面,至关重要地取决于分子构象异构体正确群体的选择。在这里,我们报告了对多种构象选择技术的深入评估,包括简单的平均,玻璃体加权,最低能量选择,低能阈值降低和相似性降低。我们使用In In In silico化学库发动机(ISICLE)每个分子生成50,000个构象异构体,以计算整个数据集的碰撞横截面。首先,我们使用蒙特卡洛模拟来了解使用模拟退火产生的构象结构之间的变异性。然后,我们使用蒙特卡洛模拟对上述构象异构体选择技术应用于模拟分子特性 - 离子迁移率碰撞横截面。根据我们的分析,我们发现Boltzmann加权是精确和理论精确性之间的良好权衡。组合多种技术表明,基于能量均值的基于偏差的相似性降低可以节省大量的计算费用,同时保持属性预测准确性。即使经过数万代,也可以继续生成新的最低能量构象体,例如琥珀色的分子动力构象生成工具,也可以继续产生最低的能量构象体,从而降低了运行之间的精度。通过对精心选择的构象异构体的运行密度功能理论优化,可以改善这种降低的精度,理论上的准确性提高。

The prediction of structure dependent molecular properties, such as collision cross sections as measured using ion mobility spectrometry, are crucially dependent on the selection of the correct population of molecular conformers. Here, we report an in-depth evaluation of multiple conformation selection techniques, including simple averaging, Boltzmann weighting, lowest energy selection, low energy threshold reductions, and similarity reduction. Generating 50,000 conformers each for 18 molecules, we used the In Silico Chemical Library Engine (ISiCLE) to calculate the collision cross sections for the entire dataset. First, we employed Monte Carlo simulations to understand the variability between conformer structures as generated using simulated annealing. Then we employed Monte Carlo simulations to the aforementioned conformer selection techniques applied on the simulated molecular property - the ion mobility collision cross section. Based on our analyses, we found Boltzmann weighting to be a good tradeoff between precision and theoretical accuracy. Combining multiple techniques revealed that energy thresholds and root-mean-squared deviation-based similarity reductions can save considerable computational expense while maintaining property prediction accuracy. Molecular dynamic conformer generation tools like AMBER can continue to generate new lowest energy conformers even after tens of thousands of generations, decreasing precision between runs. This reduced precision can be ameliorated and theoretical accuracy increased by running density functional theory geometry optimization on carefully selected conformers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源