论文标题
Moser-trudinger的临界点在闭合表面上起作用
Critical points of the Moser-Trudinger functional on closed surfaces
论文作者
论文摘要
鉴于闭合的Riemann表面$(σ,G)$和任何正平滑重量,我们使用Minmax方案以及紧凑的量化,量化结果以及尖锐的能量估计来证明功能的正临界点存在$ j_ {p,β}(u)= \ frac {2-p} {2} {2} \ left(\ frac {p \ | u \ | _ {h^1}^2} {2β} {2β} \ right) f dv_g,(1,2)$和$β> 0 $,{或}的每$ p \ in(0,\ infty)\ setminus4π\ mathbb {n} $。让$ p \ uparrow 2 $我们获得Moser-trudinger功能$$ f(u)的积极关键点:= \int_σ(e^{u^2} -1)f dv_g $$约束至$ \ mathcal {e}_β: } \ | v \ | _ {h^1}^2 =β\ right \} $对于任何$β> 0 $。
Given a closed Riemann surface $(Σ,g)$ and any positive smooth weight, we use a minmax scheme together with compactness, quantization results and with sharp energy estimates to prove the existence of positive critical points of the functional $$J_{p,β}(u)=\frac{2-p}{2}\left(\frac{p\|u\|_{H^1}^2}{2β} \right)^{\frac{p}{2-p}}-\ln \int_Σ(e^{u_+^p}-1) f dv_g,$$ for every $p\in (1,2)$ and $β>0$, {or} for $p=1$ and $β\in (0,\infty)\setminus 4π\mathbb{N}$. Letting $p\uparrow 2$ we obtain positive critical points of the Moser-Trudinger functional $$F(u):=\int_Σ(e^{u^2}-1)f dv_g$$ constrained to $\mathcal{E}_β:=\left\{v\text{ s.t. }\|v\|_{H^1}^2=β\right\}$ for any $β>0$.