论文标题

涡流贴片编排,用于活动标量方程

Vortex patches choreography for active scalar equations

论文作者

García, C.

论文摘要

本文介绍了位于常规多边形顶点的$ n $涡旋贴片的存在,其$ n $侧面以恒定的角速度旋转多边形旋转。这是为Euler和(SQG)$_β$方程式完成的,其中$β\ in(0,1)$,但也可能扩展到更通用的模型。这个想法是$ n $ point涡流系统的Thomsom Polygon的降低化,即,位于带有$ n $侧的普通多边形顶点的$ n $ point涡流。该证明基于对轮廓动力学方程的研究,并结合了无限尺寸隐式函数定理的应用和函数空间的井。

This paper deals with the existence of $N$ vortex patches located at the vertex of a regular polygon with $N$ sides that rotate around the center of the polygon at a constant angular velocity. That is done for Euler and (SQG)$_β$ equations, with $β\in(0,1)$, but may be also extended to more general models. The idea is the desingularization of the Thomsom polygon for the $N$ point vortex system, that is, $N$ point vortices located at the vertex of a regular polygon with $N$ sides. The proof is based on the study of the contour dynamics equation combined with the application of the infinite dimensional Implicit Function theorem and the well--chosen of the function spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源