论文标题

超声弹性成像中的深度学习

Deep Learning in Ultrasound Elastography Imaging

论文作者

Li, Hongliang, Bhatt, Manish, Qu, Zhen, Zhang, Shiming, Hartel, Martin C., Khademhosseini, Ali, Cloutier, Guy

论文摘要

众所周知,组织的机械性能的变化与某些疾病的发作和进展有关。超声弹性图是一种使用超声成像来表征组织刚度的技术,可以通过使用准静态弹性弹力或天然器官脉动弹性来测量组织应变,或者通过使用动态弹力来追踪由源或自然振动引起的传播剪切波。近年来,在超声弹性研究中,深度学习已经开始出现。在这篇评论中,描述了计算机视觉社区中的几个常见深度学习框架,例如多层感知器,卷积神经网络和经常性神经网络。然后,使用此类深度学习技术的超声弹性图的最新进展将根据算法的开发和临床诊断来重新审视。最后,超声弹性学中深度学习的当前挑战和未来发展得到了研究。

It is known that changes in the mechanical properties of tissues are associated with the onset and progression of certain diseases. Ultrasound elastography is a technique to characterize tissue stiffness using ultrasound imaging either by measuring tissue strain using quasi-static elastography or natural organ pulsation elastography, or by tracing a propagated shear wave induced by a source or a natural vibration using dynamic elastography. In recent years, deep learning has begun to emerge in ultrasound elastography research. In this review, several common deep learning frameworks in the computer vision community, such as multilayer perceptron, convolutional neural network, and recurrent neural network are described. Then, recent advances in ultrasound elastography using such deep learning techniques are revisited in terms of algorithm development and clinical diagnosis. Finally, the current challenges and future developments of deep learning in ultrasound elastography are prospected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源