论文标题
空间时平专员在球体上转变
Spatial-Slepian Transform on the Sphere
论文作者
论文摘要
我们介绍了空间廉母变换〜(SST),以表示球体上的信号以支持局部信号分析。我们使用良好的浓缩SLEPIAN函数,通过求解SLEPIAN空间 - 光谱浓度问题,以在球体上找到带限制和空间优化的功能,以制定拟议的转换并获得信号的关节空间slepian域表示。由于SLEPIAN函数在空间结构域中的最佳能量浓度,因此所提出的空间缩水转换使我们能够探测信号的空间定位含量。此外,我们提出了一个反变换,以从空间廉母系数中恢复信号,并表明良好浓缩的旋转的SLEPIAN函数在球体上形成了一个紧密的框架。我们开发了一种算法,用于快速计算空间廉母变换并进行计算复杂性分析。我们介绍了Zonal Slepian函数的SST的配方,它们在空间上最佳地集中在极盖〜(轴对称)区域,并使用地形地形图提供了一个插图。为了证明所提出的转换的效用,我们进行了局部变化分析。使用SST检测信号中隐藏的局部变化。
We present spatial-Slepian transform~(SST) for the representation of signals on the sphere to support localized signal analysis. We use well-optimally concentrated Slepian functions, obtained by solving the Slepian spatial-spectral concentration problem of finding bandlimited and spatially optimally concentrated functions on the sphere, to formulate the proposed transform and obtain the joint spatial-Slepian domain representation of the signal. Due to the optimal energy concentration of the Slepian functions in the spatial domain, the proposed spatial-Slepian transform allows us to probe spatially localized content of the signal. Furthermore, we present an inverse transform to recover the signal from the spatial-Slepian coefficients, and show that well-optimally concentrated rotated Slepian functions form a tight frame on the sphere. We develop an algorithm for the fast computation of the spatial-Slepian transform and carry out computational complexity analysis. We present the formulation of SST for zonal Slepian functions, which are spatially optimally concentrated in the polar cap~(axisymmetric) region, and provide an illustration using the Earth topography map. To demonstrate the utility of the proposed transform, we carry out localized variation analysis; employing SST for detecting hidden localized variations in the signal.