论文标题
关于$ \ {nα\} $ ii的随机子序列的差异
On the discrepancy of random subsequences of $\{nα\}$ II
论文作者
论文摘要
令$α$为一个不合理的数字,令$ x_1,x_2,\ ldots $是独立的,相同分布,整数值随机变量,然后放置$ s_k = \ sum_ {j = 1}^k x_j $。假设$ x_1 $具有有限的差异或重尾$ P(| x_1 |> t)\ sim ct^{ - β} $,$ 0 <β<2 $,在本文的第一部分中,我们证明,我们证明了对数因素,差异$d_kα$ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n(s_kk)$ n $ n $ n $。 α\} $是$ o(n^{ - τ})$,其中$τ= \ min(1/(βγ),1/2),1/2)$(在有限方差的情况下$β= 2 $),$γ$是强的Dioophantine型$α$。这显示了$βγ= 2 $的差异行为的变化。在本文中,我们确定$ d_n(s_kα)$ $βγ<1 $的确切数量级,并确定$ n^{ - 1/2} d_n(s_kα)$的极限分布。我们还证明了这些结果的功能版本,描述了序列$ \ {s_kα\} $的广泛功能的渐近行为。最后,我们将结果扩展到$ \ {s_k \} $的一般随机步行$ s_k $的$ \ {s_k \} $,而没有算术条件,$ x_1 $,假设$ \ {s_k \} $的弱收敛性较小的多项式速率。
Let $α$ be an irrational number, let $X_1, X_2, \ldots$ be independent, identically distributed, integer-valued random variables, and put $S_k=\sum_{j=1}^k X_j$. Assuming that $X_1$ has finite variance or heavy tails $P (|X_1|>t)\sim ct^{-β}$, $0<β<2$, in Part I of this paper we proved that, up to logarithmic factors, the order of magnitude of the discrepancy $D_N (S_k α)$ of the first $N$ terms of the sequence $\{S_k α\}$ is $O(N^{-τ})$, where $τ= \min (1/(βγ), 1/2)$ (with $β=2$ in the case of finite variances) and $γ$ is the strong Diophantine type of $α$. This shows a change of behavior of the discrepancy at $βγ=2$. In this paper we determine the exact order of magnitude of $D_N (S_k α)$ for $βγ<1$, and determine the limit distribution of $N^{-1/2} D_N (S_k α)$. We also prove a functional version of these results describing the asymptotic behavior of a wide class of functionals of the sequence $\{S_k α\}$. Finally, we extend our results to the discrepancy of $\{S_k\}$ for general random walks $S_k$ without arithmetic conditions on $X_1$, assuming only a mild polynomial rate on the weak convergence of $\{S_k\}$ to the uniform distribution.