论文标题
格罗莫夫(Gromov)非平方定理的多折证明
A Polyfold proof of Gromov's Non-squeezing Theorem
论文作者
论文摘要
我们通过将多窝理论应用于简单的Gromov-witten Moduli空间来重现Gromov的非广告定理。因此,我们演示了如何利用Hofer-Wysocki-Zehnder的工作,以提供涉及模量曲线的模量空间的证据,这些曲线相对较短且易于宽敞,同时也完全详细且严格。此外,我们还回顾了相关的球体中Gromov-witten模量空间的多折描述,其能量最小和一个标记点。
We re-prove Gromov's non-squeezing theorem by applying Polyfold Theory to a simple Gromov-Witten moduli space. Thus we demonstrate how to utilize the work of Hofer-Wysocki-Zehnder to give proofs involving moduli spaces of pseudoholomorphic curves that are relatively short and broadly accessible, while also fully detailed and rigorous. We moreover review the polyfold description of Gromov-Witten moduli spaces in the relevant case of spheres with minimal energy and one marked point.