论文标题

归因地图生成的学习传播规则

Learning Propagation Rules for Attribution Map Generation

论文作者

Yang, Yiding, Qiu, Jiayan, Song, Mingli, Tao, Dacheng, Wang, Xinchao

论文摘要

先前基于梯度的属性映射方法依赖于向后通过期间非线性/激活层的手工繁殖规则,以产生输入的梯度,然后产生属性图。尽管取得了有希望的结果,但这种方法对非信息性高频组件敏感,并且对各种模型和样品缺乏适应性。在本文中,我们提出了一种专门的方法来生成归因地图,使我们能够自动学习传播规则,从而克服手工制作的规则。具体来说,我们引入了一个可学习的插件模块,该模块可以在向后传递期间,将每个像素的自适应繁殖规则允许每个像素的自适应繁殖规则,以进行掩模生成。然后,再次将蒙版输入图像送入模型,以获得新输出,该输出与原始图像结合时可以用作指导。引入的可学习模块可以在任何具有高阶差异支持的自动级框架下进行培训。正如在五个数据集和六个网络体系结构上所证明的那样,该建议的方法得出了最新的结果,并给出了更清洁,更视觉上合理的归因地图。

Prior gradient-based attribution-map methods rely on handcrafted propagation rules for the non-linear/activation layers during the backward pass, so as to produce gradients of the input and then the attribution map. Despite the promising results achieved, such methods are sensitive to the non-informative high-frequency components and lack adaptability for various models and samples. In this paper, we propose a dedicated method to generate attribution maps that allow us to learn the propagation rules automatically, overcoming the flaws of the handcrafted ones. Specifically, we introduce a learnable plugin module, which enables adaptive propagation rules for each pixel, to the non-linear layers during the backward pass for mask generating. The masked input image is then fed into the model again to obtain new output that can be used as a guidance when combined with the original one. The introduced learnable module can be trained under any auto-grad framework with higher-order differential support. As demonstrated on five datasets and six network architectures, the proposed method yields state-of-the-art results and gives cleaner and more visually plausible attribution maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源