论文标题

基于知识图中动态的个人感知影响最大化

Influence Maximization Based on Dynamic Personal Perception in Knowledge Graph

论文作者

Teng, Ya-Wen, Shi, Yishuo, Tai, Chih-Hua, Yang, De-Nian, Lee, Wang-Chien, Chen, Ming-Syan

论文摘要

社交网络上的病毒营销(也称为影响力最大化(IM))旨在通过最大化其影响力的总体传播来选择K用户来促进目标项目。但是,大多数先前关于IM的作品都不会探讨此过程中促进项目的动态用户感知。在本文中,通过利用知识图(kg)来捕获动态用户的感知,我们用动态的个人感知(IMDPP)制定了影响最大化的问题,该问题考虑了用户的偏好和社会影响,以反映相关项目的影响。我们证明了IMDPP的硬度并设计了一种近似算法,即通过探索动态可达性,目标市场和实质性影响的概念,以选择和促进一系列相关项目,称为目标市场中的动态感知。我们使用具有实际KGS的真实社交网络的最先进方法来评估dysim的性能。实验结果表明,在最先进的方法上,wysim在大型数据集中有效地达到了6.7倍的影响力。

Viral marketing on social networks, also known as Influence Maximization (IM), aims to select k users for the promotion of a target item by maximizing the total spread of their influence. However, most previous works on IM do not explore the dynamic user perception of promoted items in the process. In this paper, by exploiting the knowledge graph (KG) to capture dynamic user perception, we formulate the problem of Influence Maximization with Dynamic Personal Perception (IMDPP) that considers user preferences and social influence reflecting the impact of relevant item adoptions. We prove the hardness of IMDPP and design an approximation algorithm, named Dynamic perception for seeding in target markets (Dysim), by exploring the concepts of dynamic reachability, target markets, and substantial influence to select and promote a sequence of relevant items. We evaluate the performance of Dysim in comparison with the state-of-the-art approaches using real social networks with real KGs. The experimental results show that Dysim effectively achieves up to 6.7 times of influence spread in large datasets over the state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源