论文标题
与多项式界限系数
Solution theory to semilinear parabolic stochastic partial differential equations with polynomially bounded coefficients
论文作者
论文摘要
我们研究了一类随机部分微分方程的功能值溶液,涉及具有多项式界限系数的运算符。我们考虑在适当的抛物线假设下的半线性方程。我们提供有关初始数据和随机项的条件,即相关的光谱度量,以便这些温和的溶液在适当选择的功能类别中独特地存在。
We study function-valued solutions of a class of stochastic partial differential equations, involving operators with polynomially bounded coefficients. We consider semilinear equations under suitable parabolicity hypotheses. We provide conditions on the initial data and on the stochastic terms, namely, on the associated spectral measure, so that these mild solutions exist uniquely in suitably chosen functional classes.