论文标题
具有封闭卷积和笔记代码互动的医学代码分配
Medical Code Assignment with Gated Convolution and Note-Code Interaction
论文作者
论文摘要
临床文本中的医学法规分配是临床信息系统管理中的一项基本任务。由于医疗笔记通常很长,并且医疗编码系统的代码空间很大,因此此任务是一个长期的挑战。最近的工作应用了深度神经网络模型来编码医疗笔记并将医疗代码分配给临床文件。但是,这些方法仍然无效,因为它们没有完全编码并捕获医学注释的冗长而丰富的语义信息,也没有明确利用音符和代码之间的相互作用。我们提出了一种新的方法,封闭式卷积神经网络和一个注释相互作用(GatedCNN-NCI),以进行自动医疗法规分配,以克服这些挑战。我们的方法通过使用嵌入注入和编码模块中的封闭信息传播来捕获冗长的临床文本的丰富语义信息,从而更好地表示。通过新颖的Note-Code交互设计和图形消息传递机制,我们明确捕获了笔记和代码之间的基本依赖关系,从而实现了有效的代码预测。重量共享方案的进一步设计以减少可训练参数的数量。现实世界中临床数据集的经验实验表明,在大多数情况下,我们提出的模型优于最先进的模型,并且我们的模型大小与轻度加权基线相当。
Medical code assignment from clinical text is a fundamental task in clinical information system management. As medical notes are typically lengthy and the medical coding system's code space is large, this task is a long-standing challenge. Recent work applies deep neural network models to encode the medical notes and assign medical codes to clinical documents. However, these methods are still ineffective as they do not fully encode and capture the lengthy and rich semantic information of medical notes nor explicitly exploit the interactions between the notes and codes. We propose a novel method, gated convolutional neural networks, and a note-code interaction (GatedCNN-NCI), for automatic medical code assignment to overcome these challenges. Our methods capture the rich semantic information of the lengthy clinical text for better representation by utilizing embedding injection and gated information propagation in the medical note encoding module. With a novel note-code interaction design and a graph message passing mechanism, we explicitly capture the underlying dependency between notes and codes, enabling effective code prediction. A weight sharing scheme is further designed to decrease the number of trainable parameters. Empirical experiments on real-world clinical datasets show that our proposed model outperforms state-of-the-art models in most cases, and our model size is on par with light-weighted baselines.