论文标题
关于HOPF代数指数的不变性和有限性的注意
Note on Invariance and Finiteness for the Exponent of Hopf Algebras
论文作者
论文摘要
文献中引入和研究了有限维的HOPF代数的指数有两个概念。在本说明中,我们讨论并比较了它们的属性,包括本说明中的不变性和有限性。具体而言,一个概念在扭曲和占据Drinfeld双打的情况下是不变的,就像另一个概念一样。我们还发现,如果非cosimimisimimblicity和Dual Chevalley财产拥有,则两个指数的特征性$ 0 $都是无限的,但具有有限的积极特征。
There are two notions of exponent of finite-dimensional Hopf algebras introduced and studied in the literature. In this note, we discuss and compare their properties including invariance and finiteness in this note. Specifically, one notion is invariant under twisting and taking the Drinfeld double, just like the other one. We also find that if the non-cosemisimplicity and dual Chevalley property hold, both exponents are infinite in characteristic $0$ but finite in positive characteristic.