论文标题

Dirac交互图片的应用到选项定价

An Application of Dirac's Interaction Picture to Option Pricing

论文作者

G, Mauricio Contreras

论文摘要

在本文中,在存在时间依赖的套利气泡的情况下,将狄拉克的量子机械相互作用图片应用于选项定价,以获取黑色 - choles方程的解决方案。特别是,对于正方形气泡扰动的调用,用三个最初的希腊人(delta,gamma和速度)给出了近似解决方案(在扰动系列中有效上升三阶)。然后,根据所有高阶$ s $衍生品的黑色 - chcholes公式构建精确的解决方案。还表明,在离散的转换下,相互作用的黑色 - choles方程是不变的,该转换与基础资产的平均值互换,反之亦然。这意味着相互作用的黑色 - choles方程可以以“低能”和“高能”形式编写,以使低能形式的高相互作用极限对应于高能形式的弱交互极限。可以将扰动分析应用于高能量形式,以研究低能形式的高相互作用极限。

In this paper, the Dirac's quantum mechanical interaction picture is applied to option pricing to obtain a solution of the Black-Scholes equation in the presence of a time-dependent arbitrage bubble. In particular, for the case of a call perturbed by a square bubble, an approximate solution (valid up third order in a perturbation series) is given in terms of the three first Greeks: Delta, Gamma, and Speed. Then an exact solution is constructed in terms of all higher order $S$-derivatives of the Black-Scholes formula. It is also shown that the interacting Black-Scholes equation is invariant under a discrete transformation that interchanges the interest rate with the mean of the underlying asset and vice versa. This implies that the interacting Black-Scholes equation can be written in a 'low energy' and a 'high energy' form, in such a way that the high-interaction limit of the low energy form corresponds to the weak-interaction limit of the high energy form. One can apply a perturbative analysis to the high energy form to study the high-interaction limit of the low energy form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源