论文标题

在神经元网络的随机动力学系统中的退出与逃脱解释了异质爆发间隔

Exit versus escape in a stochastic dynamical system of neuronal networks explains heterogenous bursting intervals

论文作者

Zonca, Lou, Holcman, David

论文摘要

神经元网络可以生成爆发事件。目前尚不清楚如何分析爆发时期及其统计数据。我们在这里研究了基于突触短期变化的平均场模型的相空间,该模型表现出突发和爆发动力学,我们确定爆发对应于从吸引吸引盆地的逃脱。使用随机模拟,我们在这里报告说,这些持续时间的分布与到达边界的时间不符。我们通过研究一类通用的二维动力学系统,进一步分析了这种现象,这些动力学系统受到小噪声的扰动,这些噪声表现出了两种特殊的行为:1-与概率密度函数相关的最大值不在该点吸引子上,这令人惊讶。最大值和吸引子之间的距离随噪声振幅$σ$增加,因为我们使用WKB近似和数值模拟显示。 2对于此类系统,从吸引力盆地退出不足以表征整个逃生时间,这是因为轨迹越过边界后可以在吸引人的盆地内返回几次,然后最终逃脱了很远。总而言之,较长的时间持续时间是动力学的固有特性,并且在经验时间序列中应预期。

Neuronal networks can generate burst events. It remains unclear how to analyse interburst periods and their statistics. We study here the phase-space of a mean-field model, based on synaptic short-term changes, that exhibit burst and interburst dynamics and we identify that interburst corresponds to the escape from a basin of attraction. Using stochastic simulations, we report here that the distribution of the these durations do not match with the time to reach the boundary. We further analyse this phenomenon by studying a generic class of two-dimensional dynamical systems perturbed by small noise that exhibits two peculiar behaviors: 1- the maximum associated to the probability density function is not located at the point attractor, which came as a surprise. The distance between the maximum and the attractor increases with the noise amplitude $σ$, as we show using WKB approximation and numerical simulations. 2- For such systems, exiting from the basin of attraction is not sufficient to characterize the entire escape time, due to trajectories that can return several times inside the basin of attraction after crossing the boundary, before eventually escaping far away. To conclude, long-interburst durations are inherent properties of the dynamics and sould be expected in empirical time series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源