论文标题

四维多核的符号嵌入到一半整数椭圆形中

Symplectic embeddings of four-dimensional polydisks into half integer ellipsoids

论文作者

Digiosia, Leo, Nelson, Jo, Ning, Haoming, Weiler, Morgan, Yang, Yirong

论文摘要

当$ 1 \ le a <2 $ <2 $和$ b $是一个半含量时,我们将四维polydisks $ p(a,1)$ p(a,1)$ p(a,1)$ p(a,1)$ p(a,1)$ p(BC,c)$ p(BC,c)$ p($ l a <2 $和$ b $是一个半含量)中获得新的尖锐障碍物。当$ 1 \ leq a <2-o(b^{ - 1})$时,我们证明$ p(a,1)$ sympletecteptection将$ e(bc,c)$ ife if ife and if and of $ a+a+a+a+a+b \ le bc $。我们的结果表明,当包含是最佳的,并通过hutchings \ cite {h}扩展结果,当$ b $是整数时。我们的证明是基于Hutchings \ cite {H}开发的组合标准来阻断符号嵌入的。

We obtain new sharp obstructions to symplectic embeddings of four-dimensional polydisks $P(a,1)$ into four-dimensional ellipsoids $E(bc,c)$ when $1\le a< 2$ and $b$ is a half-integer. When $1 \leq a < 2-O(b^{-1})$ we demonstrate that $P(a,1)$ symplectically embeds into $E(bc,c)$ if and only if $a+b\le bc$. Our results show that inclusion is optimal and extend the result by Hutchings \cite{H} when $b$ is an integer. Our proof is based on a combinatorial criterion developed by Hutchings \cite{H} to obstruct symplectic embeddings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源