论文标题

离线手写签名增强的人际参数优化

Intrapersonal Parameter Optimization for Offline Handwritten Signature Augmentation

论文作者

Maruyama, Teruo M., Oliveira, Luiz S., Britto Jr, Alceu S., Sabourin, Robert

论文摘要

通常,在现实情况下,很少有签名样本可以训练自动签名验证系统(ASV)。但是,这样的系统确实确实需要大量签名来实现可接受的性能。神经运动签名重复方法和特征空间扩大方法可用于满足样品数量增加的需求。此类技术手动或经验定义了一组参数,以引入一定程度的作者变异性。因此,在本研究中,提出了一种自动建模最常见的作者变异性状的方法。该方法用于在图像和特征空间中生成离线签名并训练ASV。我们还引入了一种考虑其特征向量的样品质量的替代方法。我们使用三个众所周知的离线签名数据集(GPDS,MCYT-75和Cedar)评估了使用生成样品的ASV的性能。在GPDS-300中,当SVM分类器使用每个作者的一个真正的签名和图像空间中产生的重复项训练时,相等的错误率(EER)从5.71%降低到1.08%。在相同的条件下,使用特征空间增强技术降至1.04%。我们还验证了在图像空间中生成重复的模型重现了三个不同数据集中最常见的作者可变性特征。

Usually, in a real-world scenario, few signature samples are available to train an automatic signature verification system (ASVS). However, such systems do indeed need a lot of signatures to achieve an acceptable performance. Neuromotor signature duplication methods and feature space augmentation methods may be used to meet the need for an increase in the number of samples. Such techniques manually or empirically define a set of parameters to introduce a degree of writer variability. Therefore, in the present study, a method to automatically model the most common writer variability traits is proposed. The method is used to generate offline signatures in the image and the feature space and train an ASVS. We also introduce an alternative approach to evaluate the quality of samples considering their feature vectors. We evaluated the performance of an ASVS with the generated samples using three well-known offline signature datasets: GPDS, MCYT-75, and CEDAR. In GPDS-300, when the SVM classifier was trained using one genuine signature per writer and the duplicates generated in the image space, the Equal Error Rate (EER) decreased from 5.71% to 1.08%. Under the same conditions, the EER decreased to 1.04% using the feature space augmentation technique. We also verified that the model that generates duplicates in the image space reproduces the most common writer variability traits in the three different datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源