论文标题
使用研究和AS2UDS的亚毫米级星系群来追踪粉尘吹入活性的演变
Tracing the evolution of dust-obscured activity using sub-millimetre galaxy populations from STUDIES and AS2UDS
论文作者
论文摘要
我们分析了研究450- $ m $ m调查的121 snr $ \ geq $ 5子毫米星系(SMG)的物理特性。我们使用Magphys+Photo-$ Z $对其UV-Radio光谱分布进行建模,并将结果与来自AS2UDS的850- $ M $ M选择的SMG样品进行比较,以了解观察到的深度的两个种群之间的基本物理差异。 450- $ m $ m样品的红移分布的中位数为$ z $ = 1.85 $ \ pm $ 0.12,可以通过强烈的远征光度函数来描述。 The fainter 450-$μ$m sample has $\sim$14 times higher space density than the brighter 850-$μ$m sample at $z$ $\lesssim$2, and a comparable space density at $z$ = 2-3, before rapidly declining, suggesting LIRGs are the main obscured population at $z$ $\sim$ 1-2, while ULIRGs dominate at higher redshifts.我们从450- $ $ m和850- $ $ $ $ $ m的样品中构建了REST-FRAME $ \ sim $ 180- $ 180- $ M $ M $ M $ M $ M $ M $ m $ M $ M $ M $ $ m $ m $ $ $ $ = 1-2和$ z $ = 3-4,以探测跨越宇宙赛车的均匀样本的演变。使用远红外的光度,尘埃质量和光学厚的灰尘模型,我们建议高红移来源由于推断出的灰尘连续大小而具有较高的灰尘密度,这在给定的尘埃质量下大约是低降距人群的一半,从而导致灰尘衰减更高。我们跟踪宇宙尘埃质量密度的演变,并表明星系的灰尘含量受气体含量变化和灰尘破坏时间尺度的结合。
We analyse the physical properties of 121 SNR $\geq$ 5 sub-millimetre galaxies (SMGs) from the STUDIES 450-$μ$m survey. We model their UV-to-radio spectral energy distributions using MAGPHYS+photo-$z$ and compare the results to similar modelling of 850-$μ$m-selected SMG sample from AS2UDS, to understand the fundamental physical differences between the two populations at the observed depths. The redshift distribution of the 450-$μ$m sample has a median of $z$ = 1.85 $\pm$ 0.12 and can be described by strong evolution of the far-infrared luminosity function. The fainter 450-$μ$m sample has $\sim$14 times higher space density than the brighter 850-$μ$m sample at $z$ $\lesssim$2, and a comparable space density at $z$ = 2-3, before rapidly declining, suggesting LIRGs are the main obscured population at $z$ $\sim$ 1-2, while ULIRGs dominate at higher redshifts. We construct rest-frame $\sim$ 180-$μ$m-selected and dust-mass-matched samples at $z$ = 1-2 and $z$ = 3-4 from the 450-$μ$m and 850-$μ$m samples, respectively, to probe the evolution of a uniform sample of galaxies spanning the cosmic noon era. Using far-infrared luminosity, dust masses and an optically-thick dust model, we suggest that higher-redshift sources have higher dust densities due to inferred dust continuum sizes which are roughly half of those for the lower-redshift population at a given dust mass, leading to higher dust attenuation. We track the evolution in the cosmic dust mass density and suggest that the dust content of galaxies is governed by a combination of both the variation of gas content and dust destruction timescale.