论文标题
与时间相关系数的非线性schrödinger方程的精确解
Exact solutions to the nonlinear Schrödinger equation with time-dependent coefficients
论文作者
论文摘要
在本文中,使用试验函数方法来找到具有时间依赖性系数的高阶非线性schrödinger方程的确切解决方案。该系统描述了非线性纤维中超短光脉冲的繁殖,具有自我静止和自频转移效应。结果,我们得出了一系列精确的解决方案,其中包括雅各比椭圆函数解决方案,孤立波解决方案和有理函数解决方案。
In this paper, the trial function method is employed to find the exact solutions for high-order nonlinear Schrödinger equations with time-dependent coefficients. This system describes the propagation of ultrashort light pulses in nonlinear fibers, with self-steepening and self-frequency shift effects. As a result, we derive a range of exact solutions which include Jacobi elliptic function solutions, solitary wave solutions, and rational function solutions.