论文标题

从频率的角度迈向少量的对抗训练

Toward Few-step Adversarial Training from a Frequency Perspective

论文作者

Wang, Hans Shih-Han, Cornelius, Cory, Edwards, Brandon, Martin, Jason

论文摘要

我们从频域的角度研究了对抗性样本生成方法,并将标准$ L _ {\ infty} $投影梯度下降(PGD)扩展到频域。在该方法的早期步骤中,与PGD相比,我们称之为光谱预测的梯度下降(SPGD)的方法具有更好的成功率。与PGD相比,使用SPGD使用SPGD的对手训练模型在保持攻击步骤的次数常数时可以实现更高的对抗精度。因此,使用SPGD的使用可以减少对抗性训练的开销,因为使用较少数量的步骤来使用对抗性。但是,我们还证明,SPGD等同于$ l _ {\ infty} $威胁模型的PGD的变体。该PGD变体省略了通常应用于梯度的符号函数。因此,可以执行SPGD,而无需显式转换为频域。最后,我们可视化SPGD生成的扰动并发现它们都使用高频和低频组件,这表明去除高频组件或低频组件不是有效的防御。

We investigate adversarial-sample generation methods from a frequency domain perspective and extend standard $l_{\infty}$ Projected Gradient Descent (PGD) to the frequency domain. The resulting method, which we call Spectral Projected Gradient Descent (SPGD), has better success rate compared to PGD during early steps of the method. Adversarially training models using SPGD achieves greater adversarial accuracy compared to PGD when holding the number of attack steps constant. The use of SPGD can, therefore, reduce the overhead of adversarial training when utilizing adversarial generation with a smaller number of steps. However, we also prove that SPGD is equivalent to a variant of the PGD ordinarily used for the $l_{\infty}$ threat model. This PGD variant omits the sign function which is ordinarily applied to the gradient. SPGD can, therefore, be performed without explicitly transforming into the frequency domain. Finally, we visualize the perturbations SPGD generates and find they use both high and low-frequency components, which suggests that removing either high-frequency components or low-frequency components is not an effective defense.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源