论文标题

通过各种统一树状态在Bethe晶格上的Hubbard模型:金属 - 绝缘体过渡和费米液体

The Hubbard model on the Bethe lattice via variational uniform tree states: metal-insulator transition and a Fermi liquid

论文作者

Lunts, Peter, Georges, Antoine, Stoudenmire, E. Miles, Fishman, Matthew

论文摘要

我们在数值上求解了有限协调号$ z = 3 $的伯特晶格上的哈伯德模型,并确定其零温度相图。为此,我们介绍并开发了一种张量网络算法的“变异统一树状态”(VUTS)算法,该算法将变异统一矩阵乘积量算法概括为树张量网络。我们的结果揭示了抗铁磁绝缘阶段和一个顺磁金属相,由一阶掺杂驱动的金属 - 绝缘子跃迁隔开。我们表明,金属状态是一种费米液体,具有连贯的准粒子激发,用于相互作用强度$ u $的所有值,我们从广义“动量”变量的单粒子职业函数中获得有限的准式粒子重量$ z $。我们发现,$ z $随着$ u $的增加而减少,最终饱和到非零,兴奋剂依赖的值。我们的工作表明,张量化的树格上的张量网络计算,尤其是VUTS算法,是一个平台,用于获得一维现象的受控结果,例如费米液体,同时避免了二维中与张量的计算困难相关的计算困难。我们设想,未来的研究可以使用该平台观察到非Fermi液体,相互作用驱动的金属绝缘体过渡和掺杂的自旋液体。

We numerically solve the Hubbard model on the Bethe lattice with finite coordination number $z=3$, and determine its zero-temperature phase diagram. For this purpose, we introduce and develop the `variational uniform tree state' (VUTS) algorithm, a tensor network algorithm which generalizes the variational uniform matrix product state algorithm to tree tensor networks. Our results reveal an antiferromagnetic insulating phase and a paramagnetic metallic phase, separated by a first-order doping-driven metal-insulator transition. We show that the metallic state is a Fermi liquid with coherent quasiparticle excitations for all values of the interaction strength $U$, and we obtain the finite quasiparticle weight $Z$ from the single-particle occupation function of a generalized "momentum" variable. We find that $Z$ decreases with increasing $U$, ultimately saturating to a non-zero, doping-dependent value. Our work demonstrates that tensor-network calculations on tree lattices, and the VUTS algorithm in particular, are a platform for obtaining controlled results for phenomena absent in one dimension, such as Fermi liquids, while avoiding computational difficulties associated with tensor networks in two dimensions. We envision that future studies could observe non-Fermi liquids, interaction-driven metal-insulator transitions, and doped spin liquids using this platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源