论文标题

跨域几次学习,通过代表融合

Cross-Domain Few-Shot Learning by Representation Fusion

论文作者

Adler, Thomas, Brandstetter, Johannes, Widrich, Michael, Mayr, Andreas, Kreil, David, Kopp, Michael, Klambauer, Günter, Hochreiter, Sepp

论文摘要

为了快速适应新数据,通常通过使用已获得的知识来从几个示例中学习的目的很少。新数据通常与由于域移位而引起的先前看到的数据有所不同,即输入目标分布的变化。虽然几种方法在小型域移动上表现良好,例如具有相似输入的新目标类,但较大的域移动仍然具有挑战性。大型领域的变化可能会导致原始域和新域之间未共享的高级概念,而低级概念(例如图像中的边缘)仍然可以共享和有用。对于跨域学习,我们建议表示融合,以将深度神经网络的不同抽象水平统一为一个表示。我们提出了跨域Hebbian合奏团(Chef)(Chef),它通过在深神经网络的不同层次上作用的Hebbian学习者合奏来实现代表性。消融研究表明,表示融合是提高跨域少数学习的决定性因素。在几个带有小域移动的少量数据集和tieredimagenet上,厨师具有最先进的方法竞争。在跨域几乎没有基准的挑战随着较大的域名转移时,厨师在所有类别中都建立了新颖的最先进的结果。我们进一步将厨师应用于现实世界中的跨域应用中。我们考虑从生物活性分子到具有十二个相关毒性预测任务的环境化学物质和药物的域转移。在这些任务上,与计算药物发现高度相关,厨师的表现明显优于其所有竞争对手。 github:https://github.com/ml-jku/chef

In order to quickly adapt to new data, few-shot learning aims at learning from few examples, often by using already acquired knowledge. The new data often differs from the previously seen data due to a domain shift, that is, a change of the input-target distribution. While several methods perform well on small domain shifts like new target classes with similar inputs, larger domain shifts are still challenging. Large domain shifts may result in high-level concepts that are not shared between the original and the new domain, whereas low-level concepts like edges in images might still be shared and useful. For cross-domain few-shot learning, we suggest representation fusion to unify different abstraction levels of a deep neural network into one representation. We propose Cross-domain Hebbian Ensemble Few-shot learning (CHEF), which achieves representation fusion by an ensemble of Hebbian learners acting on different layers of a deep neural network. Ablation studies show that representation fusion is a decisive factor to boost cross-domain few-shot learning. On the few-shot datasets miniImagenet and tieredImagenet with small domain shifts, CHEF is competitive with state-of-the-art methods. On cross-domain few-shot benchmark challenges with larger domain shifts, CHEF establishes novel state-of-the-art results in all categories. We further apply CHEF on a real-world cross-domain application in drug discovery. We consider a domain shift from bioactive molecules to environmental chemicals and drugs with twelve associated toxicity prediction tasks. On these tasks, that are highly relevant for computational drug discovery, CHEF significantly outperforms all its competitors. Github: https://github.com/ml-jku/chef

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源